X

Abstract: Ionic liquids are applicable in the recovery of valuable products, remotion of polluting agents, and used in many CO2-capture techniques. In this work, high-pressure vapor-liquid equilibria of twenty-one binary mixtures of light hydrocarbons + IL has been modelled with Peng-Robinson/Stryjek-Vera equation of state applying Wong-Sandler mixing rules and van Laar model for the gamma-phi approach and Perturbed Chain-Statistical Associating Fluid Theory equation of state for the phi-phi approach. Critical properties were determined using a group contribution method. Adjustable characteristic pure component parame- ters were obtained using predicted vapor pressures and saturated liquids densities values. Experimental data, obtained from literature, were subjected to thermodynamic consistency area test. For the thermody- namic modelling, adjustable parameters were fitted between predicted and experimental bubble pressure. Van Laar and interaction parameters were regarded as temperature-dependent. Results obtained for both models, in terms of the main deviations between experimental and calculated pressures, were reasonably satisfactory.