Nanobubble technology has emerged as a transformative approach in bioprocessing, significantly enhancing mass-transfer efficiency for effective microbial activity. Characterized by their nanometric size and high internal pressure, nanobubbles possess distinct properties such as pro longed stability and minimal rise velocities, allowing them to remain suspended in liquid media for extended periods. These features are particularly beneficial in bioprocesses involving aerobic strains, where they help overcome common obstacles, such as increased culture viscosity and diffu sion limitations, that traditionally impede efficient mass transfer. For instance, in an experimental setup, nanobubble aeration achieved 10% higher soluble chemical oxygen demand (sCOD) removal compared to traditional aeration methods. Additionally, nanobubble-aerated systems demonstrated a 55.03% increase in caproic acid concentration when supplemented with air nanobubble water, reaching up to 15.10 g/L. These results underscore the potential of nanobubble technology for opti mizing bioprocess efficiency and sustainability. This review delineates the important role of the mass-transfer coefficient (kL) in evaluating these interactions and underscores the significance of nanobubbles in improving bioprocess efficiency. The integration of nanobubble technology in bio processing not only improves gas exchange and substrate utilization but also bolsters microbial growth and metabolic performance. The potential of nanobubble technology to improve the mass transfer efficiency in biotechnological applications is supported by emerging research. However, to fully leverage these benefits, it is essential to conduct further empirical studies to specifically assess their impacts on bioprocess efficacy and scalability. Such research will provide the necessary data to validate the practical applications of nanobubbles and identify any limitations that need to be addressed in industrial settings.